[ 1 ]
谢曼 , 干勇 , 王慧 . 面向2035的新材料强国战略研究 [J]. 中国工程科学 , 2020 , 22 5 : 1 ‒ 9 .
Xie M , Gan Y , Wang H . Research on new material power strategy by 2035 [J]. Strategic Study of CAE , 2020 , 22 5 : 1 ‒ 9 .
[ 2 ]
中国工程院化工、冶金与材料工程学部 , 中国材料研究学会 编. 中国新材料产业发展报告2021 [M]. 北京 : 化学工业出版社 , 2022 .
Chemical, Metallurgical and Materials Engineering Academic Division of Chinese Academy of Engineering, Chinese Materials Research Society . Development of advanced materials industry in China: Annual report 2021 [M]. Beijing : Chemical Industry Press , 2022 .
[ 3 ]
钟志华 , 臧冀原 , 延建林 , 等 . 智能制造推动我国制造业全面创新升级 [J]. 中国工程科学 , 2020 , 22 6 : 136 ‒ 142 .
Zhong Z H , Zang J Y , Yan J L , et al . Intelligent manufacturing promotes the comprehensive upgrading and innovative growth of China´s manufacturing industry [J]. Strategic Study of CAE , 2020 , 22 6 : 136 ‒ 142 .
[ 4 ]
李元元 . 新形势下我国新材料发展的机遇与挑战 [J]. 中国军转民 , 2022 1 : 22 ‒ 23 .
Li Y Y . Opportunities and challenges for the development of new materials in China under the new situation [J]. Defense Industry Conversion in China , 2022 1 : 22 ‒ 23 .
[ 5 ]
郭东明 . 高性能精密制造 [J]. 中国机械工程 , 2018 , 29 7 : 757 ‒ 765 .
Guo D M . High-performance precision manufacturing [J]. China Mechanical Engineering , 2018 , 29 7 : 757 ‒ 765 .
[ 6 ]
孙宝德 , 王俊 , 康茂东 , 等 . 高温合金超限构件精密铸造技术及发展趋势 [J]. 金属学报 , 2022 , 58 4 : 412 ‒ 427 .
Sun B D , Wang J , Kang M D , et al . Investment casting technology and development trend of superalloy ultra limit components [J]. Acta Metallurgica Sinica , 2022 , 58 4 : 412 ‒ 427 .
[ 7 ]
王华明 . 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报 , 2014 , 35 10 : 2690 ‒ 2698 .
Wang H M . Materials´ fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronautica et Astronautica Sinica , 2014 , 35 10 : 2690 ‒ 2698 .
[ 8 ]
谢建新 . 材料加工技术的发展现状与展望 [J]. 机械工程学报 , 2003 , 39 9 : 29 ‒ 34 .
Xie J X . Developing situation and prospects of materials processing technologies [J]. Chinese Journal of Mechanical Engineering , 2003 , 39 9 : 29 ‒ 34 .
[ 9 ]
潘健生 , 王婧 , 顾剑锋 . 我国高性能化智能制造发展战略研究 [J]. 金属热处理 , 2015 , 40 1 : 1 ‒ 6 .
Pan J S , Wang J , Gu J F . Study on the development strategy of high performance intelligent manufacturing in China [J]. Heat Treatment of Metals , 2015 , 40 1 : 1 ‒ 6 .
[10]
Wadley H N G, Vancheeswaran R. The intelligent processing of materials: An overview and case study [J]. JOM, 1998, 50(1): 19‒30.
[11]
Wadley H N G, Eckhart W E. The intelligent processing of materials for design and manufacturing [J]. JOM, 1989, 41(10): 10‒16.
[12]
Parrish P A, Barker W G. The basics of the intelligent processing of materials [J]. JOM, 1990, 42(7): 14‒16.
[13]
宿彦京 , 付华栋 , 白洋 , 等 . 中国材料基因工程研究进展 [J]. 金属学报 , 2020 , 56 10 : 1313 ‒ 1323 .
Su Y J , Fu H D , Bai Y , et al . Progress in materials genome engineering in China [J]. Acta Metallurgica Sinica , 2020 , 56 10 : 1313 ‒ 1323 .
[14]
Wang H, Xiang X D, Zhang L T. On the data-driven materials innovation infrastructure [J]. Engineering, 2020, 6: 609‒611.
[15]
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J]. APL Materials, 2016, 4: 053208.
[16]
谢建新 , 宿彦京 , 薛德祯 , 等 . 机器学习在材料研发中的应用 [J]. 金属学报 , 2021 , 57 11 : 1343 ‒ 1361 .
Xie J X , Su Y J , Xue D Z , et al . Machine learning for materials research and development [J]. Acta Metallurgica Sinica , 2021 , 57 11 : 1343 ‒ 1361 .
[17]
Fang S F, Wang M P, Song M. An approach for the aging process optimization of Al-Zn-Mg-Cu series alloys [J]. Materials & Design, 2009, 30(7): 2460‒2467.
[18]
Chen Y, Tian Y, Zhou Y, et al. Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy [J]. Journal of Alloys and Compounds, 2020, 844: 156159.
[19]
Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning [J]. Nature Reviews Materials, 2021, 6: 655‒678.