一、砂型铸造定义及简介 砂型铸造是指用型砂紧实成铸型并用重力浇注的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 二、砂型铸造的工艺流程 制作木模-翻砂造型-熔化-浇注-落砂-去浇冒口清理-检验入库。
铸造流程生产工艺流程图(铸造生产的工艺流程)
加工工艺就是加工的过程、顺序、方法。以下是我为大家整理的关于产品加工工艺流程图,给大家作为参考,欢迎阅读!
产品加工工艺流程图
铸造工艺流程 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图;
2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备;
3)造型与制芯;
4)熔化与浇注;
5)落砂清理与铸件检验等主要工序。
成形原理
铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。
铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。
型砂的性能及组成
1、 型砂的性能
型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。
2、 型砂的组成
型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤粉、锯末、纸浆等。型砂结构,如图2所示。
工艺特点
铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点:
1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。
2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。
3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。
4)铸件一般使用的原材料来源广、铸件成本低。
5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。
铸件的手工造型
手工造型的主要方法
砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法:
手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种:
1. 整模造型
对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等。
整模造型
2.分模造型
当铸件的最大截面不在铸件的端部时,为了便于造型和起模,模样要分成两半或几部分,这种造型称为分模造型。当铸件的最大截面在铸件的中间时,应采用两箱分模造型(图3),模样从最大截面处分为两半部分(用销钉定位)。造型时模样分别置于上、下砂箱中,分模面(模样与模样间的接合面)与分型面(砂型与砂型间的接合面)位置相重合。两箱分模造型广泛用于形状比较复杂的铸件生产,如水管、轴套、阀体等有孔铸件。
套管的分模两箱造型过程
铸件形状为两端截面大、中间截面小,如带轮、槽轮、车床四方刀架等,为保证顺利起模,应采用三箱分模造型。此时分模面应选在模样的最小截面处,而分型面仍选在铸件两端的最大截面处,由于三箱造型有两个分型面,降低了铸件高度方向的尺寸精度,增加了分型面处飞边毛刺的清整工作量,操作较复杂,生产率较低,不适用于机器造型,因此,三箱造型仅用于形状复杂、不能用两箱造型的铸件生产。
3.活块模造型
铸件上妨碍起模的部分(如凸台、筋条等)做成活块,用销子或燕尾结构使活块与模样主体形成可拆连接。起模时先取出模样主体,活块模仍留在铸型中,起模后再从侧面取出活块的造型方法称为活块模造型。活块模造型主要用于带有突出部分而妨碍起模的铸件、单件小批量、手工造型的场合。如果这类铸件批量大,需要机器造型时,可以用砂芯形成妨碍起模的那部分轮廓。
4.挖砂造型
当铸件的外部轮廓为曲面(如手轮等)其最大截面不在端部,且模样又不宜分成两半时,应将模样做成整体,造型时挖掉妨碍取出模样的那部分型砂,这种造型方法称为挖砂造型。挖砂造型的分型面为曲面,造型时为了保证顺利起模,必须把砂挖到模样最大截面处(图6)。由于是手工挖砂,操作技术要求高,生产效率低,只适用于单件、小批量生产。
手工制芯
型芯用来形成铸件内部空腔或局部外形。由于型芯的表面被高温金属液包围,长时间受到浮力作用和高温金属液的烘烤作用;铸件冷却凝固时,砂芯往往会阻碍铸件自由收缩;砂芯清理也比较困难。因此造芯用的芯砂要比型砂具有更高的强度、透气性、耐高温性、退让性和溃散性。
手工制芯由于无需制芯设备,工艺装备简单,应用得很普遍。根据砂芯的大小和复杂程度,手工制芯用芯盒有整体式芯盒、对开式芯盒和可拆式芯盒。
零件、模样、芯盒与铸件的关系
一般产品都是浇铸,压铸,拉伸,挤压成形。前俩种,可以做比较复杂的工艺,后俩种,有一定的生产局限。
铝电解生产流程
现代铝工业生产采用冰晶石――氧化铝融盐电解法。熔融冰晶石是溶剂,氧化铝是溶质被溶解,以碳素作为阳极(预焙阳极块),铝液作为阴极,通入直流电流后,在940℃~970℃下,电解槽两极上进行电化学反应,即电解。阳极产物主要是二氧化碳,和一氧化碳气体,但其中含有一定量的氟化氢(HF)等有害气体和固体粉尘,须对阳极气体进行净化处理,除去有害气体和粉尘后排入大气。阴极产物是铝液,铝液通过真空抬包从槽内抽出,送往铸造车间,在混合炉内净化澄清之后,浇注成铝锭,或生产成线坯,型材等。其生产工艺流程图如下图3-1:
氧化铝 氟化铝 碳阳极
直流电
阳极气体
铝 液
废气排空 返
电解
槽载氟氧化铝
铝 锭
合金、线坯
图3-1 铝电解生产工艺流程图
第二节 铝电解生产原辅材料
1. 氧化铝:
氧化铝通常称为“铝氧”,是一种白色粉状物,熔点为2050℃,沸点为3000℃,真密度为3.6g/cm3。它的流动性好,不溶于水,能溶解在熔融的冰晶石中。它是铝电解生产的中的主要原料。
氧化铝在电解生产中的作用是:a. 不断地补充电解质中的铝离子,使其浓度保持在一定的范围内,保证电解生产的持续进行;b.氧化铝覆盖在电解质壳面上可以起到良好的保温作用,覆盖在阳极炭块的氧化;c.在烟气净化系统中充当吸附剂,用来吸附阳极气体中的氟化氢(HF)气体。
在化学纯度方面,要求氧化铝中杂质含量和水份要低。因为氧化铝中那些电位正于铝元素的氧化物,例如SiO2(二氧化硅)和Fe2O3(氧化铁),在电解过程中会被铝还原,或者优先于铝离子在阴极析出。析出的硅、铁,进入铝内,降低铝的品位,而那些电位负于铝元素的氧化物,如Na2O、CaO(氧化钙)会分解冰晶石,一是引起氟化盐消耗,二是增加铝中的氢含量,三是产生氟化氢气体,污染环境。P2O3(五氧化二磷)会影响电流效率。氧化铝的化学成分要求见表3-1。
表3-1 我国氧化铝质量标准(YB814-75)
等级
代号 化学成份(%)
Al2O3含量
不少于 杂质含量不大于
SiO2 Fe2O3 Na2O 灼碱
一级
二级
三级
四级
五极
六级 Al2O3—1
Al2O3—2
Al2O3—3
Al2O3—4
Al2O3—5
Al2O3—6 98.6
98.5
48.4
98.3
98.2
97.8 0.02
0.04
0.06
0.08
0.10
0.15 0.03
0.04
0.04
0.05
0.05
0.06 0.50
0.55
0.60
0.60
0.60
0.70 0.8
0.8
0.8
1.0
1.0
1.2
除化学成分外,中心下料预焙槽对氧化铝的物理性能也有特殊要求:
a. 具有较小的吸水性,在电解质中溶解性好;
b.粒度适宜,加料时飞扬损失少,能严密地覆盖在阳极炭块上,防止阳极在空气中氧化;
c. 保温性能好,活性大,从而能有效地吸收HF气体。
d. 安息角:35~38°。
根据氧化铝的物理性能不同,可分为三类:砂状、粉状和中间状,下表3-2列出三种氧化铝的特性。
表3-2 不同类型氧化铝的特性
氧化铝类型 安息角(°) 灼 减(%) 累 计 (%)
-44μm -74μm
砂 状
中间状
粉 状 30
40
45 1.0
0.5
0.5 5 -15
30-40
50-60 40-50
60-70
80-90
基本操作流程超声波除油、化学研磨、两次沉锌、两次脱锌、《硫酸铜》镍打底,半光、全光、镍封、镀铬
铸造工艺图cad画法如下:
首先打开AutoCAD2014, 在界面的左上角点击开始菜单 ,然后选择“新建”—“图形”。在选择样板窗口中,选择acadis.dwt,点击“打开”,新建一张空白图纸。找到菜单中的图层标签,点击该标签内最左上角的“图层特性”按钮,此时,将弹出图层特性管理器。在图层特性管理器内添加需要用到的图层,根据自己的习惯命名并定义颜色,并选择相应的线型和线宽。
接着正式绘图,首先绘制出整个流程中所需要用到的仪器仪表的简化符号,注意要按流程摆放整齐。接下来再各个仪器仪表之间添加代表流程顺序的箭线,同时对整个图纸进行进一步的调整。最后,添加必要的标注和文字描述,这样,整个化工工艺流程图就大功告成了。
铸造工艺图,又叫红蓝工艺图。它是在零件图上以规定的红、蓝等色符号表示铸造工艺内容所得到的图形,是铸造行业所特有的一种图样。
其主要内容包括:浇注位置、分型面、铸造工艺参数(机械加工余量、起模斜度、铸造圆角、收缩率、芯头等)。铸造工艺图是指导铸造生产的技术文件,也是验收铸件的主要依据。
相关技术:
在计算机辅助设计中,交互技术是必不可少的。交互式cad系统, 指用户在使用计算机系统进行设计时,人和机器可以及时地交换信息。采用交互式系统,人们可以边构思 、边打样、边修改,随时可从图形终端屏幕上看到每一步操作的显示结果,非常直观。
应用铸造有关理论和系统知识生产铸件的技术和 方法 。包括铸件工艺,浇注系统,补缩系统,出气孔,激冷系统,特种铸造工艺等内容。以下是我为大家整理的关于齿轮铸造工艺流程图,给大家作为参考,欢迎阅读!
齿轮铸造工艺流程图
常用铸造齿轮材料及其热处理工艺方法
一、铸铁齿轮材料及其热处理
铸铁齿轮常用材料为灰铸铁及球墨铸铁。
1.齿轮用灰铸铁
灰铸铁抗拉强度低,脆性较高,抗弯及耐冲击能力很差,但它易于铸造,易切削,具有良好的耐磨性、缺口敏感性小、减振性及成本低特点,可用于低速、载荷不大的开式齿轮传动。
(1)齿轮用灰铸铁的牌号及力学性能齿轮用灰铸铁的牌号及抗拉强度见表1。
(2)灰铸铁齿轮表面硬度和耐磨性灰铸铁表面热处理前最好先正火处理。表面热处理,如高中频感应淬火及化学热处理等,其中高中频感应淬火应用最多。高中频感应淬火温度通常采用850~950℃加热淬火,由于铸铁导热性差,因此加热速度不易太快,单位功率要比同样的钢件小一些。否则,会产生裂纹和熔化现象。铸铁经高频感应加热后,淬火冷却介质一般采用水、PAG进行冷却。回火温度一般在200~400℃,铸铁齿轮经淬火、回火后硬度为40~50HRC。灰铸铁齿轮金相检验执行GB/T7216《灰铸铁金相检验》标准。
2.齿轮用球墨铸铁
球墨铸铁的性能介于钢和灰铸铁之间,强度比灰铸铁高很多,具有良好的韧性和塑性,在冲击不大的情况下,可代替钢制齿轮。齿轮制造主要使用珠光体和贝氏体球墨铸铁,牌号在QT500以上,热处理一般采用正火+回火。
(1)球墨铸铁牌号、基体组织、力学性能及其各热处理状态下的力学性能球墨铸铁牌号、基体组织、力学性能见表2。
(2)球墨铸铁热处理铸造齿轮毛坯的预处理一般采用退火、正火,也可进行正火+回火,或调质处理。球墨铸铁齿轮的常用热处理工艺见表3。
(3)球墨铸铁金相检验执行GB/T9441《球墨铸铁金相检验》标准。
(4)应用例1:球墨铸铁齿轮,材料为球墨铸铁QT700-2,要求正火+回火处理。提高铸件的综合力学性能,特别是提高铸件的塑性和韧性。热处理方法是中温部分奥氏体化正火+回火,其热处理工艺如图1所示。
热处理后检验其力学性能:抗拉强度σb=700~840MPa,伸长率δ=2%~5%,冲击韧度αK=16~22J/cm2,硬度为212~254HBW。金相组织:珠光体+破碎铁素体+球状石墨。
例2:收获机双联齿轮,材料为球墨铸铁QT600-3,重量0.92kg,要求正火处理。热处理方法是球墨铸铁齿轮采用正火,其热处理工艺如图2所示。热处理后检验其抗拉强度σb=640MPa,伸长率δ=3.5%。
例3:汽车主、从动弧齿锥齿轮,材料为高强度高韧性球墨铸铁。力学性能要求:抗拉强度σb=1300~1500MPa,冲击韧度αK=60~100J/cm2,硬度为45~49HRC。部分化学成分要求:wSi=2.8%~3.0%,wMn50J/cm2,硬度为247HBW。金相组织:粒状珠光体+少量点状铁素体+球状石墨。化学成分:wC=3.8%,wSi=2.2%,wMn=0.6%,wMg=0.05%,wRE=0.025%,wS=0.026%,wP
(5)球墨铸铁齿轮的感应热处理球墨铸铁齿轮采用感应热处理工艺处理后,不仅可以获得高的齿面硬度及耐磨性能,而且齿轮变形较小,生产成本较低。
实例:轨道起重机用大模数球墨铸铁齿轮,模数为18mm,要求中频感应淬火,齿面硬度≥35HRC,硬化层深度2~3mm。齿轮的铸态性能:抗拉强度σb=600MPa,伸长率δ=7.8%。预备热处理采用正火方法:880℃×2.5h。采用BPSD100/8000中频机组单齿淬火。其工艺参数为:比功率0.008kW/mm2,加热温度980~1030℃,加热时间35s,喷水冷却时间10s,回火工艺为380℃×1h。检验结果:齿面硬度42~45HRC,硬化层深度2~3mm,经磁粉无损检测齿面无裂纹。
(6)球墨铸铁齿轮的化学热处理球墨铸铁齿轮采用化学热处理方法,可以获得较高的硬度、接触疲劳强度等,使齿轮使用寿命大幅度提高。
例1:铁素体球墨铸铁齿轮,要求氮碳共渗。氮碳共渗介质:CO2∶NH3=5∶100,氨分解率为62%~63%。氮碳共渗处理温度为570℃,处理时间4h,然后随炉冷却。热处理后检验:齿轮硬度64HRC;白亮层深度7μm;扩散层深度143μm;接触疲劳极限提高73%(热处理前569MPa,热处理后1060MPa)。
例2:195型 拖拉机 球墨铸铁齿轮,要求离子渗氮。离子渗氮温度540~550℃,处理时间6~8h。电压750~850V,电流25A,氨气压力133~266Pa,真空度13.3Pa。热处理后检验:齿轮硬化层深度0.2mm,渗氮后内孔尺寸基本不变,不需要再磨削内孔。使用试验表明齿轮耐磨性良好。
(7)贝氏体球墨铸铁及其热处理贝氏体球墨铸铁具有高强度、高伸长率和高冲击值的良好综合力学性能,还具有很高的弯曲疲劳强度和良好的耐磨性能。热处理后的齿轮在工作时,残留奥氏体会发生强化效应,即轮齿表面层的奥氏体发生加工硬化作用,使表面具有优良的耐磨性,这是一般渗碳、渗氮等表面处理所不能做到的。从齿轮结构和生产工艺看,贝氏体球墨铸铁更适合于制造大齿轮。
热处理工艺方法:经贝氏体等温淬火后组织为贝氏体+残留奥氏体,强度高,韧性好。国内外大多采用传统的硝盐等温淬火获得贝氏体组织,或采用高温油代替盐浴进行等温淬火。
实例1:农用车后桥齿圈(模数≥3mm),采用贝氏体球墨铸铁代替20CrMnTi钢。采用中温箱式炉,加热温度880~900℃,保温80min,使之完全奥氏体化后放入260~290℃的硝盐槽中冷却90min,取出空冷。球墨铸铁齿圈经等温淬火后,石墨形态为球化1~3级;球径5~7级;基体为1~3级的下贝氏体和等量残留奥氏体。力学性能:σb=1100~1200MPa;δ=1%~1.5%;αK=20~25J/cm2;硬度为40~45HRC。通过装车2万余辆使用情况看,无一发现问题。
实例2:拖拉机最终传动从动齿轮,材料为贝氏体球墨铸铁。采用井式渗碳炉,自动控制碳势,每炉48件,合计500kg。奥氏体化温度900℃,保温2h出炉,为减小变形采用盐浴等温淬火工艺,等温淬火温度为290℃,等温时间1.5h。等温淬火采用B—35型盐浴炉,并配以搅拌及冷却装置。等温处理后的金相组织级别及硬度见表4,得到金相组织为下贝氏体+残留奥氏体,金相检验按GB/T9441。经抛丸处理后,齿根部位的弯曲疲劳强度提高到357MPa,达到了齿轮的设计要求。经装车试验,运行600h后齿面无裂纹及点蚀,磨损量很小,并降低成本20%。
二、铸钢齿轮材料及其热处理
同前面铸铁齿轮材料相比,铸钢材料具有较高强度、硬度和耐磨性能,可用于负荷较大的大齿轮。
1.齿轮用铸钢的牌号、特性与用途
齿轮用铸钢多为合金钢,少数为碳钢。齿轮在铣齿前需经退火、正火或调质处理,以提高齿轮的硬度和强度。齿轮用铸钢的牌号、特性与用途。
2.铸钢齿轮的热处理
(1)铸钢齿轮的预备热处理铸钢齿轮的预备热处理一般采用退火或正火工艺。但应视情况,分别采用不同的预备热处理方法:
①低碳钢一般选用正火处理,获得均匀的铁素体+细片状珠光体组织。
②中碳钢及合金钢一般采用完全退火或等温退火,获得铁素体+片状(或球状)珠光体组织。
以上两种预备热处理方式,都可以清除铸造中出现的粗大晶粒、网状铁素体和魏氏体组织等微观缺陷和应力。改善了工件的切削性能,并细化了组织,为最终热处理做好了组织准备,同时也减少了变形开裂。
③若为消除铸造应力,可采用低温退火工艺。
④对大型铸件,往往出现枝晶偏析,可采用均匀化退火。由于均匀化退火温度较高,处理后组织变得异常粗大,因此在均匀化退火后,还应进行一次完全退火或正火,细化晶粒,提高力学性能,改善加工性能,为最终热处理做好组织准备。
应用实例:CYTJ10—0型抽油机左右斜齿轮(见图5),材料为铸造合金钢ZG35SiMn,毛坯重量200kg。
铸件材料及技术要求为:力学性能σb≥580MPa,σS≥350MPa,δ5≥14%。金相组织要求基体为珠光体+铁素体,细颗粒碳化物≤1.5%(体积分数)。通过超声波无损检测是否有疏松、夹杂及裂纹等缺陷。
采用完全退火,其热处理工艺。
热处理后检验,力学性能:抗拉强度σb=617MPa,屈服强度σS=355MPa,伸长率δ=6%。金相组织:珠光体+铁素体,具有细小颗粒状碳化物为1.5%(体积分数)。无损检测:无疏松、夹杂及裂纹等缺陷。
(2)铸钢齿轮的调质齿轮铸造后预备热处理(如退火或正火等),为调质处理做好组织准备。再经过调质处理后齿轮获得良好的综合力学性能。
应用实例:橡胶机械设备XM—250/20G密炼机齿轮(见图7),毛坯重4780kg,法面模数16mm,齿数116,铸造后正火。
铸件材料及技术要求:铸件材料为铸造碳钢ZG310-570。化学成分,其中wC=0.5%,wSi=0.6%,wMn=0.9%~1.2%,wS≤0.04%,wP≤0.04%。力学性能为σb≥570MPa,σs≥310MPa,δ≥15%,调质硬度要求为220~250HBW。
正火+回火工艺如图8所示。调质工艺如图9所示。
热处理后检验:调质处理后金相组织为回火索氏体,硬度为210~260HBW。
(3)铸钢齿轮的感应淬火热处理铸钢齿轮经过调质处理后,齿轮心部性能得到强化,再对轮齿进行中频感应淬火处理,进一步保证齿轮表面硬度及较小的热处理畸变。
应用实例:大齿轮,材料为铸钢ZG270-500,重量80.3kg,要求调质后中频感应淬火处理。
调质工艺如图10所示。中频感应淬火及回火工艺如图11所示。
热处理后检验:齿轮调质硬度为207~241HBW,轮齿表面硬度为35~40HRC。
猜你喜欢:
1. 铸造实习报告范文3篇
2. 齿轮谁发明
3. 个人机械制造工艺实习报告6篇
4. 铸造实习心得3篇
5. 什么是低压铸造 低压铸造的原理