In recent years, with increasingly maturing of computer simulation technology, numerical simulation methods are playing an increasing significant role in casting macroscopic process, and the research status on numerical simulation technologies in casting macroscopic processes is summarized in this paper. The differences in casting filling process discribed using different flow models are compared, and it is found that the two-phase flow model can be used to accurately handle the effect of gas phase on filling process. The applicabilities of different stress models to the evolution process of casting stress are also analyzed. The accessing and correcting method of physical property parameters, which is fit for simulation of casting macroscopic process, is explained. And the method is that the alloy composition and solidus/liquidus temperature are measured by experimental means, then physical property parameters are calculated by relevant softwares and adjusted accordingly, at last, the parameters are corrected according to temperature experiment. The boundary conditions of different casting techniques are listed, and, in addition, the boundary conditions of high pressure die casting (velocity inlet) and directional solidi fication (radiation heat transfer boundary) are explained specially. The differences of different mesh types are compared, in combination with which the differences of different numerical solution methods are analyzed. The suitable meshes would be adaptive hexahedral mesh and hybrid mesh, because they fit more for finite volume method (calculation for filling process) and finite element method (calculation for solidification and stress evolution processes). Prediction models and analysis methods of different casting defects are illustrated. In this paper, various methods used in simulation of casting process are introduced, and their application development trends are also predicted. We hope to offer a reliable reference for numerical simulation methods of casting macroscopic process.